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ABSTRACT 
 

Poisson regression is a commonly used tool for analyzing rate data; however, the 
assumption that the mean and variance of a process are equal rarely holds true in practice. When 
this assumption is violated, a quasi-Poisson distribution can be used to account for the existing 
over- or under-dispersion. This paper presents an analysis of a study conducted by NASA to assess 
the performance of a new airborne spacing algorithm. A deterministic computer simulation was 
conducted to examine the algorithm in various conditions designed to simulate real-life scenarios, 
and two measures of algorithm performance were modeled using both continuous and categorical 
factors. Due to the presence of under-dispersion, tests for significance of main effects and two-
factor interactions required bias adjustment. This paper presents a comparison of tests of effects 
for the Poisson and quasi-Poisson models, details of fitting these models using common statistical 
software packages, and calculation of dispersion tests. 
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1. INTRODUCTION 

 
Many engineering processes require monitoring the number of times an event occurs in a 

given unit interval. For example, consider a process in which an important quality characteristic is 
the number of flaws in an object, the number of defective items in a batch, or the number of phone 
calls per day to a customer service department. These rates are often modeled by a Poisson 
distribution. A key assumption of the Poisson distribution is that the mean and variance of the 
process are equal; however, this is rarely the case in practice. Instead, over-dispersion often exists 
due to the variance being greater than the mean. In far fewer cases, such as the one presented here, 
data are under-dispersed (variance less than the mean). Inference concerning effects of interest can 
account for these over- and under-dispersed cases by relaxing the assumption of equi-dispersion 
and implementing a quasi-Poisson inference approach. The case study in this paper concerns the 
application of quasi-Poisson regression to an airborne spacing algorithm to properly account for 
the bias in effects tests since the more common use of the negative binomial is not applicable in 
the under-dispersed case. 

 
The National Aeronautics and Space Administration (NASA) conducted a computer 

simulation to assess the performance of a recently modified airborne spacing algorithm used in a 
suite of integrated air/ground technologies that allow Interval Management (IM) operations to 
occur in high-density terminal environments (Swieringa et al. 2014). IM consists of flight deck 
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automation that enables aircraft to achieve or maintain precise spacing behind a preceding aircraft, 
which is referred to as the target aircraft. The avionics used to conduct an IM operation include a 
spacing algorithm onboard the aircraft that provides commanded speeds which the flight crew 
follows in order to achieve or maintain the precise spacing interval. The existing NASA spacing 
algorithm was recently modified to address integration issues with air traffic control automation 
that were discovered during previous human-in-the-loop simulations. A computer simulation was 
specifically designed to evaluate the modified algorithm before proceeding with additional, more 
expensive human-in-the-loop testing. Two of the key metrics used in the evaluation showed clear 
signs of being under-dispersed (i.e., variance less than the mean). Since inference from a Poisson 
regression relies upon the assumption of equi-dispersed data, resulting effects tests are biased when 
the data are truly over- or under-dispersed. Therefore, inference of these two key performance 
metrics with respect to the factors of interest in this simulation and their interactions required 
proper bias-adjustment to account for the under-dispersion.  

 
Data were collected during a deterministic computer simulation with a simulated airspace 

that modeled the Phoenix Sky Harbor (KPHX) terminal environment. Table 1 presents the five 
independent variables used in this study: wind condition, target aircraft speed profile, target aircraft 
arrival route, initial spacing error, and expected target aircraft weight. The five wind conditions 
were chosen from actual winds recorded at KPHX and correspond to wind patterns that were 
expected to test the modifications to the airborne spacing algorithm. The seven target aircraft speed 
profiles, created by KPHX subject matter experts, represent various trajectories flown by the target 
aircraft, and the expected weight of the target aircraft varied from 160,000 to 198,000 pounds. The 
two target aircraft arrival routes correspond to the target aircraft arriving at KPHX on the northwest 
(MAIER) or northeast (EAGUL) routes as depicted in Figure 1. At the start of a run, the IM aircraft 
had an initial spacing error that was either on time, 60 seconds ahead of schedule, or 60 seconds 
behind schedule. This experiment utilized a factorial design, so all treatment combinations were 
simulated. Since the study was deterministic, only one replicate was needed, resulting in a total of 
630 runs. 

 

 
 

Figure 1. Depiction of the arrival routes and three regions of the airspace 
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Table 1. Independent variables under investigation and their levels 
 

Independent Variable Levels 
Wind Condition (WC) High Wind Magnitude 

Target Late and IM Aircraft Late 

Target Early and IM Aircraft Early 

Target Late and IM Aircraft Early 

Target Early and IM Aircraft Late 

Target Speed Profile (TSP) Nominal 

Altitude Change 

Fast 

Slow 

Pulse 1 

Pulse 2 

Pulse 3 

Target Arrival Route (TAR) EAGUL 

MAIER 

Initial Spacing Error (ISE) 60 seconds early 

on time 

60 seconds late 

Expected Target Weight (ETW) 160,000 lbs. 

185,000 lbs. 

198,000 lbs. 

 
 

Before implementing the algorithm into a larger scale environment with direct human 
participation, researchers were interested in identifying specific conditions of the factors listed in 
Table 1 that degrade the spacing algorithm’s performance. Two of the metrics collected during the 
study to quantify this behavior were spacing error inflection count and speed change rate. An 
inflection occurs when the IM aircraft is more than 10 seconds behind schedule and then traverses 
the on-time mark to become more than 10 seconds ahead of schedule, or vice versa (see Figure 2). 
The number of inflections is a means by which to monitor the stability of the spacing algorithm’s 
control law, and a large number of inflections is an indicator that the control law is underdamped. 
The ideal behavior of the airborne spacing algorithm is to null the spacing error and then maintain 
the assigned spacing interval for the duration of the flight; thus, the number of inflections is not 
expected to have a high dependence on the length of the flight. The speed change rate commanded 
by the algorithm is defined as the number of speed changes per minute during IM operations. The 
speed change rate was analyzed for three non-overlapping regions of the simulated airspace: 
Center, Terminal Radar Approach Control (TRACON), and Final Approach (see Figure 1). In 
practice, each of these three airspace regions have different design constraints and are controlled 
by different air traffic controllers using different techniques at separate facilities, and the target 
aircraft speed profiles in this study were designed to emulate this behavior. In addition, a single 
wind field varies by altitude; thus, as an aircraft descends during its flight from the Center airspace 
to the runway, the winds encountered vary. As a result, the correlation in the speed change rate for 
a single flight is considered to be negligible over these three regions of airspace. Therefore, in this 
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study, inflection counts are analyzed per flight, while speed change rates are calculated per minute 
(min) for each region of the simulated airspace.  

 
 

 
 
Figure 2. Depiction of two inflections occurring. First, when the IM aircraft moves from Zone B 
(more than 10 seconds behind schedule) to Zone A (more than 10 seconds ahead of schedule). 
Then, a second inflection occurs when the IM aircraft moves from Zone A back to Zone B. 
 
 
2. METHODS 

 
The most common method for modeling count data is implementing a Poisson regression; 

however, under-dispersion in all four datasets of interest from the simulation study was anticipated. 
That is, low variability with respect to the mean was expected since recent modifications to the 
algorithm included several new features intended to improve the speed control behavior by 
decreasing the frequency of speed changes and reducing the effect of noise on the commanded 
speeds. It is common in practice to encounter datasets that do not meet the equal mean/variance 
assumption of the Poisson distribution, though under-dispersion is the rarer of the two cases. Some 
examples of modeling over- or under-dispersed data include the simulation study of Heinzl and 
Mittlbock (2003), which investigates the effect of dispersion on R-squared measures for Poisson 
regression models, Byers et al. (2003) where the negative binomial regression model is used for 
over-dispersed discrete outcomes, and Boyle et al. (1997) where under-dispersed, zero-inflated 
medical data were analyzed using Poisson regression models to evaluate the bias of goodness-of-
fit statistics when the data sets are sparse. Unlike in Boyle et al. (1997), our data are not zero-
inflated and our focus is on inference rather than on goodness-of-fit. 

 
2.1 Poisson Regression 

 
Consider a dataset for which the data are counts recorded within a specified unit interval 

(time, distance, area, etc.), i.e., rates. The Poisson distribution models the probability of y events 
occurring within a specified unit interval as 

 

Spacing Error 

Distance to the Runway 

10 sec 
ahead 

on 
schedule 

10 sec 
behind 

Zone A 

Zone B 

Inflection Inflection 
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𝑃𝑃(𝑦𝑦|𝜇𝜇) = 𝑒𝑒−𝜇𝜇𝜇𝜇𝑦𝑦

𝑦𝑦!
,  𝑦𝑦 = 0, 1 , 2, … 

 
where μ is both the mean and variance of the distribution, and depends on the specified unit or 
period of time. For example, if µ is the mean number of events per unit time and t is the time period 
of interest, then the mean number of events in time period t is µt. This expression is based on the 
assumption that the mean number of events per unit is constant. However, in practice the mean 
often depends on levels of regressor variables that change during the process. In this case, Poisson 
regression can be used to model the data.  
 

Let 𝑥𝑥𝑖𝑖𝑖𝑖 be the level of the j-th regressor variable at time ti for i = 1,…, n and j = 1,…, k. 
Then µi is the mean number of events in time period ti. Assuming for 𝑖𝑖 = 1, … ,𝑛𝑛 that 𝜇𝜇𝑖𝑖 is not 
changing independently from observation to observation, then the rate 𝜇𝜇

𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒
R can be modeled as a 

function of the k regressor variables. The Poisson mean then becomes 𝜇𝜇(𝒙𝒙𝒊𝒊;𝜷𝜷) where 𝜷𝜷 is a vector 
of parameters to be estimated and 𝒙𝒙𝑖𝑖 is a vector of k regressors at time i. The representation 
𝜇𝜇(𝒙𝒙𝒊𝒊;𝜷𝜷) is referred to as the link function because it relates the regressor variables to the 
distribution mean. Using the log-link function results in the Poisson generalized linear model 
(GLM) also known as the log-linear regression model,  

 
𝜇𝜇

𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒
= 𝜇𝜇(𝒙𝒙𝒊𝒊;𝜷𝜷) = 𝑒𝑒𝒙𝒙𝒊𝒊

𝑻𝑻𝜷𝜷 = 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+⋯+𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘. 
 
Taking the natural log of both sides, 
 

ln � 𝜇𝜇
𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒

� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘  
𝜇𝜇 = 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+⋯+𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘+𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑡𝑡 

 
where the offset term represents the natural log of the time taken for the y events to occur. The 
coefficient of this offset term is fixed at one since the response is assumed to change per unit of 
time yet the progression of time does not affect the response. Also, when the interval of time for 
recording counts is the same for each observation, the offset is solely a constant that no longer aids 
in explaining variation from interval to interval and is therefore absorbed into the model intercept 
term, 𝛽𝛽0. We refer the reader to McCullagh and Nelder (1989), Myers (1990), and Cameron and 
Trivedi (1998) for further details concerning regression models for count data and other GLMs. 
For our datasets, inflection counts were analyzed as counts per simulated flight, resulting in the 
offset = 𝑙𝑙𝑛𝑛(𝑡𝑡𝑖𝑖𝑡𝑡𝑒𝑒 𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝) = 𝑙𝑙𝑛𝑛(1 flight) = 0. However, all three speed change rate metrics were 
analyzed as the number of changes per minute, and since each flight segment varied in length of 
time, an offset of 𝑙𝑙𝑛𝑛(𝑡𝑡𝑖𝑖𝑛𝑛𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚 𝑖𝑖𝑛𝑛 𝑚𝑚𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑝𝑝 𝑠𝑠𝑙𝑙𝑖𝑖𝑓𝑓ℎ𝑡𝑡 𝑝𝑝𝑒𝑒𝑓𝑓𝑖𝑖𝑝𝑝𝑛𝑛) was added to each model. 
 
2.2 Quasi-Poisson Modeling and Bias-Adjustment 

 
Although Gourieroux et al. (1984) point out that parameter estimates using standard 

Poisson regression are consistent in the presence of over- or under-dispersion, Cameron and 
Trivedi (1986) show that standard errors of these estimates are biased downward in the presence 
of over-dispersion and upward in the presence of under-dispersion. Due to the consistency of the 
linear estimators, prediction is not affected by the presence of over- or under-dispersion; however, 
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inference is directly affected by biased standard errors and their subsequent effects-test statistics. 
In the case of over-dispersion, this could result in a variable appearing to be significant when in 
fact it is not, and the opposite incorrect conclusion that a variable is not significant when in fact it 
is can occur in the under-dispersed case. Therefore, proper adjustment of these errors is critical for 
statistical inference. By adjusting the effects-test statistics, equi-dispersion is no longer an 
assumption and, therefore, quasi-Poisson rather than standard Poisson regression analysis should 
be conducted. 

 
Cameron and Trivedi (1998) state that an alternative to Poisson regression is to specify a 

more general distribution than the Poisson (such as the negative binomial) that does not require 
equally dispersed data. Indeed, adopting the negative binomial is common practice when the data 
suffer from over-dispersion; however, they also note that use of the negative binomial distribution 
is not permissible in the case of under-dispersion since the formulation of the negative binomial 
requires the mean to be less than or equal to the variance. The authors go on to suggest that the 
easiest way to handle under-dispersed data is to conduct a standard Poisson regression to estimate 
model parameters since the parameter estimates are consistent and then adjust the biased standard 
errors of the output. Statistical software packages such as JMP and R have dispersion options 
available that calculate the dispersion parameter and automatically adjust the biased errors and 
effects-test statistics. However, if these types of adjustments are not readily available in software, 
they can be carried out by simply multiplying the biased standard errors of effects by the square 
root of the dispersion parameter, 𝜙𝜙,and dividing 𝜒𝜒2 test statistics directly by 𝜙𝜙, where  

 
 𝜙𝜙 = 1

𝑛𝑛−𝑑𝑑𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∑ (𝑦𝑦𝑖𝑖−𝜇𝜇�𝑖𝑖)2

𝜇𝜇�𝑖𝑖
𝑛𝑛
𝑖𝑖=1   (1) 

 
is the sum of the squared standardized (Pearson) residuals divided by the residual degrees of 
freedom and  𝜇𝜇𝚤𝚤� = 𝑒𝑒𝑥𝑥𝑝𝑝(𝒙𝒙𝑖𝑖′𝜷𝜷�) are the fitted values from the standard Poisson regression. Here n is 
the number of total observations and 𝑝𝑝𝑠𝑠𝑡𝑡𝑜𝑜𝑑𝑑𝑒𝑒𝑚𝑚 is the total degrees of freedom from the effects in 
the model (see the next section for an explanation of the degrees of freedom for an individual 
model effect).  
 

It is important to note that the dispersion parameter will always be greater than or equal to 
zero. Intuitively, 𝜙𝜙 can be interpreted by its deviation from the value of one, where 𝜙𝜙 < 1 indicates 
under-dispersion, 𝜙𝜙 > 1 indicates over-dispersion, and values of 𝜙𝜙 close to one indicate the 
standard Poisson equal mean/variance relationship holds true (i.e., equi-dispersion). In cases of 
perfect equi-dispersion, the sum of the squared Pearson residuals mentioned above will be equal 
to the residual degrees of freedom, resulting in 𝜙𝜙 = 1. The sum of the Pearson residuals is also 
known as the Pearson 𝜒𝜒2 test statistic and follows an approximate 𝜒𝜒2 distribution with residual 
degrees of freedom when n is large. Therefore, deviations from equi-dispersion can be tested, 
though it should be noted that due to the approximate 𝜒𝜒2 distribution this is not an exact test and 
should be interpreted accordingly, especially in cases of low degrees of freedom. For over-
dispersion (under-dispersion), upper (lower) quantiles are used for a specified one sided α-level 
hypothesis test of the Pearson 𝜒𝜒2 test statistic (Agresti, 2007).  
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2.3 Inference of Poisson Regression Models 
 
In this study, three of the five independent variables were categorical, which is very 

common in simulations conducted at NASA to evaluate new air traffic management technologies. 
Inference on Poisson regression models containing categorical factors can be conducted by testing 
individual “dummy” variables or by conducting Likelihood Ratio (LR) tests for each individual 
effect (Agresti, 2007). If “dummy” variables are used, a base level is chosen against which to test 
the other levels of the variable.  LR-tests can be used to determine if the overall effect of the 
variable (i.e., a combination of all its levels) has a significant impact on the response. That is, LR-
tests indicate whether the model fits the data better with or without the variable. Individual effects 
can then be tested by comparing reduced models less each variable to the full model containing all 
variables. Some software packages use these Type-III tests of effects as standard output. Other 
packages may require these Type-III test calculations to be specified beforehand or may follow 
effect heredity assumptions which rely on main effect and interaction parent relationships. 

 
In the case of the equi-dispersed Poisson model, the LR-test rejects the significance of a 

main effect or interaction if 
 

 −2𝑙𝑙𝑛𝑛 � 𝐿𝐿(𝑜𝑜𝑓𝑓𝑚𝑚𝑚𝑚 𝑡𝑡𝑜𝑜𝑑𝑑𝑒𝑒𝑚𝑚)
𝐿𝐿(𝑟𝑟𝑒𝑒𝑑𝑑𝑓𝑓𝑟𝑟𝑒𝑒𝑑𝑑 𝑡𝑡𝑜𝑜𝑑𝑑𝑒𝑒𝑚𝑚)

� > 𝜒𝜒(1−𝛼𝛼,𝑑𝑑𝑜𝑜)
2   (2) 

 
where L is the likelihood of a model. The LR-test statistic follows a 𝜒𝜒2 distribution with degrees 
of freedom equal to one if the factor is continuous and v-1 degrees of freedom if the factor is 
categorical where v represents the number of levels for the tested categorical effect. Two-factor 
interactions where both factors are categorical can be tested in a similar fashion using the product 
of the degrees of freedom of the respective categorical factors. Two-factor interactions made up 
of one continuous and one categorical factor use degrees of freedom of the categorical factor. In 
the case of over- or under-dispersed data, these 𝜒𝜒2 statistics are biased, and thus, need to be 
adjusted. This can be achieved by simply dividing each 𝜒𝜒2 statistic by the dispersion parameter 
given in (1). Therefore, for the over- or under-dispersed case, the effects-test in (2) becomes 
 
 −2𝑙𝑙𝑛𝑛 � 𝐿𝐿(𝑜𝑜𝑓𝑓𝑚𝑚𝑚𝑚 𝑡𝑡𝑜𝑜𝑑𝑑𝑒𝑒𝑚𝑚)

𝐿𝐿(𝑟𝑟𝑒𝑒𝑑𝑑𝑓𝑓𝑟𝑟𝑒𝑒𝑑𝑑 𝑡𝑡𝑜𝑜𝑑𝑑𝑒𝑒𝑚𝑚)
� ∗ ϕ−1 >  𝜒𝜒(1−𝛼𝛼,𝑑𝑑𝑜𝑜)

2 .  (3) 
 
The simulation experiment presented in this paper implements the Type-III LR-test because 
overall effects rather than level-to-level comparisons were of interest. P-values rather than bias-
adjusted 𝜒𝜒2 statistics are presented to allow for easier interpretation of the results. If a practitioner 
is not using software to carry out the calculations, it should be noted that 𝜒𝜒2 statistics for effects 
in over- or under-dispersed cases should be calculated using likelihoods from the standard Poisson 
models before being adjusted by the dispersion parameter. 
 
 
3. RESULTS 

 
For the simulation study presented in this paper, the researchers were interested in testing 

for significant under-dispersion. From Table 2 we can see that dispersion parameter values for 
each of the datasets are far less than a value of one, indicating proper bias-adjustment would likely 
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show some effects as significant even though standard Poisson regression analysis may not. The 
Pearson 𝜒𝜒2 tests revealed significant under-dispersion in each of our four datasets (all p-values < 
0.0001).  
 
Table 2. Dispersion parameters for inflection count and speed change rates 
 

Metric Dispersion 
Parameter 𝝓𝝓 

p-value for Pearson 𝝌𝝌𝟐𝟐 Test 
for Under-Dispersion 

Inflection Count 0.43 < 0.0001 
Speed Change Rate for Center 0.33 < 0.0001 
Speed Change Rate for TRACON 0.25 < 0.0001 
Speed Change Rate for Final Approach 0.22 < 0.0001 

 
 
Both the non-adjusted and bias-adjusted Type-III tests of effects for inflection count and 

speed change rate are shown in Table 3. In both cases for inflection count, none of the main effects 
are significant and the same six two-factor interactions involving wind condition, target aircraft 
arrival route, target aircraft speed profile, and initial spacing error are significant at the α = 0.05 
level; however, note the smaller p-values as a result of properly adjusting for under-dispersion. 
The last six columns of Table 3 show the change in p-values when adjusting for under-dispersion 
in each of the three speed change rate models. For the Center region, the quasi-Poisson effects 
tests indicate two significant interaction effects not found by the standard Poisson tests. For the 
TRACON and Final Approach regions, the standard analysis results in no statistically significant 
effects, while the bias-adjusted analysis detected a number of statistically significant main effects 
and two-factor interactions.  

 
Table 3. Comparison of Type-III tests of effects when using standard non-adjusted results and 
bias-adjusted results 
 

Effect Inflection Count Speed Change Rate 
 Center  TRACON  Final Approach 

Standard 
P-value 

Quasi 
P-value 

Standard 
P-value 

Quasi 
P-value 

Standard 
P-value 

Quasi 
P-value 

Standard 
P-value 

Quasi 
P-value 

WC 0.9702 0.8731 0.8599  0.4143 0.4948    0.0082 * 0.9093 0.3230 
TAR 0.8740 0.8096 0.5975  0.3596 0.9771 0.9540 0.8894 0.7642 
TSP 0.9811 0.8614 0.9940  0.9024 0.7326    0.0243 * 0.9399 0.2228 

ETW 0.6262 0.4593 0.9060  0.8376 0.6263 0.3270 0.7046 0.4135 
ISE 0.3881 0.1899 0.6164  0.3847 0.7923 0.5961 0.8164 0.6165 

WC*TAR < 0.0001 * < 0.0001 *    0.0010 * < 0.0001* 0.1173 < 0.0001 * 0.2184 < 0.0001 * 
WC*TSP < 0.0001 * < 0.0001 *    0.0330 * < 0.0001* 0.5016 < 0.0001 * 0.5284 < 0.0001 * 

WC*ETW 0.9530 0.8117 0.9773  0.8467 0.7260 0.0806 0.9120 0.3328 
WC*ISE < 0.0001 * < 0.0001 * < 0.0001 * < 0.0001* 0.8702 0.2817 0.9938 0.8981 

TAR*TSP < 0.0001 * < 0.0001 *    0.0044 * < 0.0001* 0.3338    0.0001 * 0.2927 < 0.0001 * 
TAR*ETW 0.8700 0.8037 0.8609  0.7611 0.7738 0.5629 0.9462 0.8842 
TAR*ISE < 0.0001 * < 0.0001 * 0.0866   0.0030* 0.0898    0.0006 * 0.5687 0.2189 
TSP*ETW 0.9645 0.7726 0.9929 0.8892 0.7069    0.0181 * 0.9809 0.5208 
TSP*ISE < 0.0001 * < 0.0001 * 0.3868   0.0041* 0.6918    0.0151 * 0.7498    0.0133 * 

ETW*ISE 0.7771 0.6672 0.4468 0.1869 0.9584 0.9163 0.8737 0.7317 
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An example of the benefit of adjusting for under-dispersion can be seen in Figure 3. The 
first plot in Figure 3 shows that the high magnitude wind condition produced the largest speed 
change rate in the TRACON when combined with the altitude change, pulse 2, pulse 3, and slow 
speed profiles. The second plot in Figure 3 shows that on Final Approach, the highest speed change 
rate occurred with the target late / IM early and target early / IM late wind conditions combined 
with the fast and nominal target aircraft speed profiles. However, the interaction between the wind 
condition and the target aircraft speed profile for speed change rate in the TRACON and on Final 
Approach was only found to be statistically significant after the quasi-Poisson regression was 
adjusted for under dispersion. The results indicate that an increase in the speed change rate 
degrades algorithm performance since it can increase pilot workload as well as decrease the 
efficiency of the aircraft. These results may have been missed if the quasi-Poisson regression had 
not been adjusted for under-dispersion.  

 
Interaction effects between wind condition, target aircraft speed profile, target aircraft 

arrival route, and initial spacing error were found to be significant for both inflection count and 
speed change rate in this initial computer simulation. These independent variables were further 
investigated in a follow-on study which evaluated performance at multiple airports. None of the 
effects associated with expected target aircraft weight were significant, indicating that the 
algorithm is robust to target aircraft weight. Since changes in the weight of the target aircraft does 
not affect performance, this independent variable did not need to be further investigated. These 
findings can be used to better understand the conditions that affect the performance of the 
algorithm and provide valuable information for future algorithm improvements. 
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Figure 3. Interaction plots of the target aircraft speed profile by wind condition for speed change 
rate in the TRACON and on Final 
 
 
3.1 Comments on Statistical Software Packages 

 
Not all statistical software packages appear to fully support the ability to provide dispersion 

tests for both under- and over-dispersion cases. As an example, JMP Pro 12.1.0 will produce the 
Pearson 𝜒𝜒2 goodness-of-fit statistic; however, the subsequent test result reflected in a p-value is 
only for over-dispersion. Hence, for cases of significant under-dispersion, this software will 
correctly indicate no over-dispersion, but a test for under-dispersion as outlined above will not be 
given. That is, the software only provides a test for over-dispersion by implementing upper 
quantiles for a specified one sided α-level hypothesis test of the Pearson 𝜒𝜒2 test statistic. For our 
cases, we were interested in testing for significant under-dispersion. Therefore, lower quantiles 
were instead used and separate calculations using the R statistical software package revealed 
significant under-dispersion in each of our four datasets (see Table 2). 
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Concerning inference, JMP and R statistical packages support quasi-Poisson analysis for 

both under- and over-dispersed data. In JMP Pro 12.1.0, a dispersion option in the GLM model 
fitting tool can be selected prior to fitting the log-linear model. With this option, Type-III tests of 
effects are provided and likelihood ratio 𝜒𝜒2 statistics are automatically bias-adjusted by dividing 
each by 𝜙𝜙. Although the overall dispersion test results from this software package are always in 
terms of over-dispersion, effects tests are still bias-adjusted in the proper direction for either the 
under- or over-dispersed case. The R-3.1.0 statistical software package can also accommodate 
quasi-Poisson analysis through the use of the glm() function within the stats package with the 
family=quasipoisson option, which provides a dispersion parameter as standard output. Type-III 
tests of effects can be calculated in R by implementing the drop1() function for the quasi-Poisson 
fitted model and indicating the LR Test option; however, the R package will enforce strong effect 
heredity when exchanging in and out each of the model terms. That is, removing a main effect will 
also result in the automatic removal of all two-factor interactions involving that factor when 
calculating the likelihood of the reduced model. As a consequence, tables shown in this study 
reflect results from implementing the JMP Pro 12.1.0 software. 

 
 

4. CONCLUSIONS 
 
A summary of the statistically significant factors when adjusting for under-dispersion is 

shown in Table 4. The high magnitude wind condition produced the largest speed change rate in 
the TRACON when combined with the altitude change, pulse 2, pulse 3, and slow target aircraft 
speed profiles. On Final Approach, the highest speed change rate occurred with the target late / IM 
early and target early / IM late wind conditions combined with the fast and nominal target aircraft 
speed profiles. These results can be used to better understand performance of the algorithm and 
provide valuable information for future algorithm improvements. For example, the performance 
of the algorithm could be improved in the future if more detailed wind information was available 
to the IM aircraft. The true impact of this result would have been mistakenly identified as 
insignificant had the Poisson distribution assumption of equal mean and variance been enforced. 

 
It can be seen in Table 4 that the main effects are rarely statistically significant for any of 

the metrics even after being bias-adjusted, while two-factor interactions between wind condition, 
target aircraft arrival route, target aircraft speed profile, and initial spacing error are almost always 
statistically significant. The dynamics of the system, including the algorithm and aircraft 
dynamics, are very complex. This indicates that changes in a single input to the system may have 
very little effect on the system output; however, changes in multiple factors can create significant 
changes in the output. Ideally, the algorithm’s performance would be robust to external factors, so 
that performance would be consistent under all conditions. Detection of the statistically significant 
effects identified specific conditions that degrade algorithm performance. These factors were 
further evaluated in a follow-on computer simulation prior to additional expensive human-in-the-
loop testing. Based on the results of the simulation presented in this paper, the follow-on study 
also examined a modified process for providing wind information to the algorithm. By not properly 
taking into account the under-dispersion present in the data, statistical inference would deem most 
if not all of the effects to be non-significant in a study where actual relationships between the 
factors and responses deserve closer attention. Though not the case in the study presented here, 
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just as important is the detection of over-dispersion and the ability to test if its influence requires 
tests of effects to be bias-adjusted upward. The same quasi-Poisson methodology can be 
implemented to account for over-dispersion as well as under-dispersion. 
 
 
Table 4. Summary of significant effects for all metrics investigated when the bias due to under-
dispersion is properly adjusted 
 

Effect Inflection 
Count 

Speed Change Rate 
 Center  TRACON  Final 

Approach 
WC   X  
TAR     
TSP   X  
ETW     
ISE     

WC*TAR X X X X 
WC*TSP X X X X 
WC*ETW     
WC*ISE X X   

TAR*TSP X X X X 
TAR*ETW     
TAR*ISE X X X  
TSP*ETW   X  
TSP*ISE X X X X 
ETW*ISE     
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